Adaptive IMRT using a multiobjective evolutionary algorithm integrated with a diffusion-invasion model of glioblastoma.
نویسندگان
چکیده
We demonstrate a patient-specific method of adaptive IMRT treatment for glioblastoma using a multiobjective evolutionary algorithm (MOEA). The MOEA generates spatially optimized dose distributions using an iterative dialogue between the MOEA and a mathematical model of tumor cell proliferation, diffusion and response. Dose distributions optimized on a weekly basis using biological metrics have the potential to substantially improve and individualize treatment outcomes. Optimized dose distributions were generated using three different decision criteria for the tumor and compared with plans utilizing standard dose of 1.8 Gy/fraction to the CTV (T2-visible MRI region plus a 2.5 cm margin). The sets of optimal dose distributions generated using the MOEA approach the Pareto Front (the set of IMRT plans that delineate optimal tradeoffs amongst the clinical goals of tumor control and normal tissue sparing). MOEA optimized doses demonstrated superior performance as judged by three biological metrics according to simulated results. The predicted number of reproductively viable cells 12 weeks after treatment was found to be the best target objective for use in the MOEA.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملToward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma
PURPOSE To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and compare them to the standard-of-care protocol. METHODS AND MATERIALS We integrated a patient-specific biomathematical model of glioma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to const...
متن کاملMultiobjective design of sewer networks
The sewer layout in flat areas significantly influences the construction and operational costs as well as reliability of the network performance. To find an optimum design of sewer networks for flat areas, this study presents a multi-objective optimization problem with the objective functions of 1- the cost and 2- the reliability. The reliability criterion is defined as the effect of a clogging...
متن کاملA multi-objective evolutionary approach for integrated production-distribution planning problem in a supply chain network
Integrated production-distribution planning (PDP) is one of the most important approaches in supply chain networks. We consider a supply chain network (SCN) to consist of multi suppliers, plants, distribution centers (DCs), and retailers. A bi-objective mixed integer linear programming model for integrating production-distribution designed here aim to simultaneously minimize total net costs in ...
متن کاملA Prioritized Multiobjective Mpc Configuration Using Adaptive Rbf Networks and Evolutionary Computation
In this work a prioritized multiobjective model predictive control configuration for nonlinear processes is proposed. The process is modeled by an adaptive radial basis function neural network so that modifications through time can be identified. The different control targets are formulated in a multiobjective optimization problem which is solved using a prioritized evolutionary algorithm. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 57 24 شماره
صفحات -
تاریخ انتشار 2012